

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

Trade name

WIDOCRYL-point

1.2 Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses of the substance or mixture

Coatings

Uses advised against

No data available.

1.3 Details of the supplier of the safety data sheet

Address

Widopan Produkte GmbH

Ostereichen 3

D-21714 Hammah

Telephone no. +49 (0) 4144 69821-0 Fax no. +49 (0) 4144 69821-20

Information provided by / telephone

+49 (0) 4144 69821-0

Advice on Safety Data Sheet

sdb_info@umco.de

Details of the importer

Address

Widopan Limited

System House

Horndon Industrial Park

24 Station Rd

West Horndon

Brentwood

CM13 3XL

1.4 Emergency telephone number

For medical advice (in German and English):

+49 (0)551 192 40 (Giftinformationszentrum Nord)

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification in accordance with Regulation (EC) No 1272/2008 (CLP)

Aquatic Chronic 3; H412

Flam. Liq. 2; H225

Skin Irrit. 2; H315

Skin Sens. 1; H317

STOT SE 3; H335

Classification information

This product is assessed and classified using the methods and criteria below referred to in Article 9 of Regulation (EC) n° 1272/2008:

Physical hazards: determined through assessment data based on the methods or standards referred to in part 2 of Annex I to CLP

Health hazards and environmental hazards: determined through toxicological and ecotoxicological assessment data based on the methods or standards referred to in Part 3, 4 and 5 of Annex I to CLP.

2.2 Label elements

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

Labelling according to Regulation (EC) No 1272/2008 (CLP Regulation)

Hazard pictograms

GHS02

Signal word

Danger

Hazardous component(s) to be indicated on label:

methyl-methacrylate dodecane-1-thiol

Hazard statement(s)

H225 Highly flammable liquid and vapour.

H315 Causes skin irritation.

H317 May cause an allergic skin reaction.
H335 May cause respiratory irritation.

H412 Harmful to aquatic life with long lasting effects.

Hazard statements (EU)

EUH208 Contains 2-Hydroxyethyl methacrylate, 2,2'-ethylenedioxydiethyl dimethacrylate, methyl

1,2,2,6,6-pentamethyl-4-piperidyl sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)

sebacate. May produce an allergic reaction.

Precautionary statement(s)

P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No

smoking.

P243 Take action to prevent static discharges.

P261 Avoid breathing vapours/spray.

P271 Use only outdoors or in a well-ventilated area.

P273 Avoid release to the environment.

P280 Wear protective gloves/protective clothing/eye protection/face protection.
P501 Dispose of contents/container to a facility in accordance with local and national

regulations.

2.3 Other hazards

No data available.

SECTION 3: Composition/information on ingredients

3.1 Substances

Not applicable. The product is not a substance.

3.2 Mixtures

Hazardous ingredients

No	Substance name		Addit	ional informatio	n	
	CAS / EC / Index /	Classification (EC) 1272/2008 (CLP)	Conc	entration		%
	REACH no					
1	methyl-methacrylat	te				
	80-62-6	Flam. Liq. 2; H225	>=	50.00 - <	70.00	wt%
	201-297-1	Skin Irrit. 2; H315				
	607-035-00-6	Skin Sens. 1; H317				
	01-2119452498-28	STOT SE 3; H335				
2	2-Hydroxyethyl me	thacrylate				
	868-77-9	Eye Irrit. 2; H319	<	2.50		wt%
	212-782-2	Skin Irrit. 2; H315				
	607-124-00-X	Skin Sens. 1; H317				
	01-2119490169-29					

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

3	2.2'-ethylenedioxyd	diethyl dimethacrylate			
	109-16-0	Skin Sens. 1B; H317	<	2.50	wt%
	203-652-6	,			
	-				
	01-2119969287-21				
4	methyl 1,2,2,6,6-pe	ntamethyl-4-piperidyl sebacate			
	82919-37-7	Aquatic Acute 1; H400	<	0.50	wt%
	280-060-4	Skin Sens. 1; H317			
	-	Aquatic Chronic 1; H410			
	-				
5	bis(1,2,2,6,6-pentar	methyl-4-piperidyl) sebacate			
	41556-26-7	Aquatic Acute 1; H400	<	0.50	wt%
	255-437-1	Skin Sens. 1; H317			
	-	Aquatic Chronic 1; H410			
	-				
6	dodecane-1-thiol				
	112-55-0	Skin Corr. 1C; H314	<	0.50	wt%
	203-984-1	Eye Dam. 1; H318			
	-	Skin Sens. 1A; H317			
	01-2119491318-31	Aquatic Acute 1; H400			
		Aquatic Chronic 1; H410			

Full Text for all H-phrases and EUH-phrases: pls. see section 16

No	Note	Specific concentration limits	M-factor (acute)	M-factor (chronic)
1	D	-	-	-
3	D	-	-	-
6	-	-	M = 10	M = 10

Full text for the notes: pls. see section 16 "Notes relating to the identification, classification and labelling of substances ((EC) No 1272/2008, Annex VI)".

SECTION 4: First aid measures

4.1 Description of first aid measures

General information

In case of persisting adverse effects, consult a physician. Remove contaminated clothing and shoes immediately, and launder thoroughly before reusing. If the patient is likely to become unconscious, place and transport in stable sideways position.

After inhalation

Remove affected person from the immediate area. Ensure supply of fresh air. Irregular breathing/no breathing: artificial respiration. Call a doctor immediately.

After skin contact

Remove with a cloth or paper. Wash off with soap and water. Don't use solvents. Consult a doctor if skin irritation persists.

After eye contact

Remove contact lenses. Rinse eye thoroughly under running water keeping eyelids wide open and protecting the unaffected eye (at least 10 to 15 minutes). Seek medical assistance.

After ingestion

Do not induce vomiting. Call a doctor immediately. Rinse the mouth thoroughly with water. Drink water in small gulps. Never give anything by mouth to an unconscious person.

4.2 Most important symptoms and effects, both acute and delayed

No data available.

4.3 Indication of any immediate medical attention and special treatment needed No data available.

SECTION 5: Firefighting measures

Trade name: WIDOCRYL-point

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

5.1 Extinguishing media

Suitable extinguishing media

Alcohol-resistant foam; Extinguishing powder; Water spray jet; Carbon dioxide

Unsuitable extinguishing media

High power water jet

5.2 Special hazards arising from the substance or mixture

In the event of fire, the following can be released: Carbon dioxide (CO2); Carbon monoxide (CO)

5.3 Advice for firefighters

Use self-contained breathing apparatus. Cool endangered containers with water spray jet. Suppress gases/vapours/mists with water spray jet. Wear protective clothing.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

For non-emergency personnel

Refer to protective measures listed in sections 7 and 8. Avoid contact with skin, eyes and clothing. Ensure adequate ventilation. Keep away from ignition sources.

For emergency responders

No data available. Personal protective equipment (PPE) - see Section 8.

6.2 Environmental precautions

Do not discharge into the drains/surface waters/groundwater. Do not discharge into the subsoil/soil.

6.3 Methods and material for containment and cleaning up

Take up with absorbent material (e.g., sand, kieselguhr, universal binder). Send in suitable containers for recovery or disposal.

6.4 Reference to other sections

No data available.

SECTION 7: Handling and storage

7.1 Precautions for safe handling

Advice on safe handling

Provide good ventilation at the work area (local exhaust ventilation, if necessary). If workplace exposure limits are exceeded, respiratory protection approved for this particular job must be worn. Risks inherent to handling the product must be minimised by applying the appropriate protective and preventive measures. Working processes should - so far as possible, according to the state of the art - be designed to rule out bodily contact or the release of hazardous substances.

General protective and hygiene measures

Do not eat, drink or smoke during work time. Keep away from foodstuffs and beverages. Avoid contact with eyes and skin. Remove soiled or soaked clothing immediately. Do not inhale vapours. Wash hands before breaks and after work. Use barrier skin cream. Provide eye wash fountain in work area. Have emergency shower available.

Advice on protection against fire and explosion

Vapours can form an explosive mixture with air. Take precautionary measures against static charges. Keep away from sources of heat and ignition. Use explosion-proof equipment/fittings and non-sparking tools.

7.2 Conditions for safe storage, including any incompatibilities

Technical measures and storage conditions

Keep container tightly closed and dry in a cool, well-ventilated place. Protect from heat and direct sunlight. Keep in a cool place, heat causes increase in pressure and risk of bursting.

Recommended storage temperature

Value 5 - 25 °C

Requirements for storage rooms and vessels

Trade name: WIDOCRYL-point

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

Containers which are opened must be carefully closed and kept upright to prevent leakage. Always keep in containers of same material as the original. Fill containers only up to 80%, because oxygen (air) is necessary for stabilization.

Incompatible products

Do not store together with fire promoting substances. Do not store together with foodstuffs.

7.3 Specific end use(s)

No data available.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limit values

No	Substance name	CAS no.		EC no.	
1	methyl-methacrylate	80-62-6		201-297-1	
	2009/161/EU				
	methyl methacrylate				
	WEL short-term (15 min reference period)			100	ppm
	WEL long-term (8-hr TWA reference period)			50	ppm
	List of approved workplace exposure limits (WELs) / E	H40			
	Methyl methacrylate				
	WEL short-term (15 min reference period)	416	mg/m³	100	ppm
	WEL long-term (8-hr TWA reference period)	208	mg/m³	50	ppm

DNEL, DMEL and PNEC values

DNEL values (worker)

No	Substance name			CAS / EC no	
	Route of exposure	Exposure time	Effect	Value	
1	methyl-methacrylate			80-62-6 201-297-1	
-	d = 1111	Charttanna (acut)	Innal		· / - · 2
	dermal	Short term (acut)	local	1.5	mg/cm ²
	dermal	Long term (chronic)	systemic	13.67	mg/kg
	dermal	Long term (chronic)	local	1.5	mg/cm ²
	inhalative	Long term (chronic)	systemic	348.4	mg/m³
	inhalative	Long term (chronic)	local	208	mg/m³
	inhalative	Short term (acut)	local	416	mg/m³

DNEL value (consumer)

No	Substance name			CAS / EC no	
	Route of exposure	Exposure time	Effect	Value	
1	methyl-methacrylate			80-62-6	
				201-297-1	
	oral	Long term (chronic)	systemic	8.2	mg/kg bw/day
	dermal	Short term (acut)	local	1.5	mg/cm ²
	dermal	Long term (chronic)	systemic	8.2	mg/kg
	dermal	Long term (chronic)	local	1.5	mg/cm ²
	inhalative	Long term (chronic)	systemic	74.3	mg/m³
	inhalative	Long term (chronic)	local	104	mg/m³
	inhalative	Short term (acut)	local	208	mg/m³

PNEC values

No	Substance name		CAS / EC no	
	ecological compartment	Туре	Value	
1	methyl-methacrylate		80-62-6	
			201-297-1	
	water	fresh water	0.94	mg/L
	water	marine water	0.094	mg/L
	water	Aqua intermittent	0.94	mg/L

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

water	fresh water sediment	10.2	mg/kg
water	marine water sediment	0.102	mg/kg dry
			weight
soil	-	1.48	mg/kg dry
			weight
sewage treatment plant	-	10	mg/L

8.2 Exposure controls

Appropriate engineering controls

No data available.

Personal protective equipment

Respiratory protection

If workplace exposure limits are exceeded, a respiration protection approved for this particular job must be worn. In case of aerosol and mist formation, take appropriate measures for breathing protection in the event workplace threshold values are not specified.

Respiratory filter (gas):

Eye / face protection

Tightly fitting safety glasses (EN 166).

Hand protection

Sufficient protection is given wearing suitable protective gloves checked according to i.e. EN 374, in the event of risk of skin contact with the product. Before use, the protective gloves should be tested in any case for its specific workstation suitability (i.e. mechanical resistance, product compatibility and antistatic properties). Adhere to the manufacturer's instructions and information relating to the use, storage, care and replacement of protective gloves. Protective gloves shall be replaced immediately when physically damaged or worn. Design operations thus to avoid permanent use of protective gloves.

Other

fire-resistant protective clothing

Environmental exposure controls

No data available.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

State of aggregation			
liquid			
Form			
liquid; liquid			
Colour			
coloured; coloured			
Odour			
of acrylate			
Odour threshold			
Value	0.05	ppm	
pH value			
No data available			
Boiling point / boiling range			
Value	101	°C	
Method	DIN 51751		
Reference substance	Methyl methacrylate		
Melting point/freezing point			
Value	-48	°C	

Trade name: WIDOCRYL-point

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

rteplacea version.	,		Region. G
Methyl methacrylate			
13	°C		
DIN 51755			
Methyl methacrylate			
2.	1 % vol		
Methyl methacrylate			
12	2.5 % vol		
Methyl methacrylate			
38	3.7 mbar		
Methyl methacrylate			
1	36 g/cm ³		
DIN 53217			
insoluble			
a valuo)			
	n.	EC no.	
	1.38		
	20	°C	
		203-984-1	
>		°C	
pH 7	25		
OECD 117			
ECHA			
25			
I DIN 53018			
	Methyl methacrylate DIN 51755 Methyl methacrylate Methyl methacrylate Methyl methacrylate Methyl methacrylate Methyl methacrylate Insoluble CAS not solve the s	Methyl methacrylate	12 °C DIN 51755 Methyl methacrylate 2.1 % vol Methyl methacrylate

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

Particle characteristics	
No data available	

9.2 Other information

Other information	
No data available.	

SECTION 10: Stability and reactivity

10.1 Reactivity

No data available.

10.2 Chemical stability

Stable if stored and handled properly.

10.3 Possibility of hazardous reactions

No data available.

10.4 Conditions to avoid

Heat, naked flames or other ignition sources, electrostatic charge and discharge, formation of vapours/aerosols.

10.5 Incompatible materials

Peroxides; Amines; Heavy metals; Oxidizing agents; Reducing agents

10.6 Hazardous decomposition products

No hazardous decomposition products known.

SECTION 11: Toxicological information

11.1 Information on hazard classes as defined in Regulation (EC) No 1272/2008

Acu	Acute oral toxicity						
No	Substance name	CA	AS no.	EC no.			
1	dodecane-1-thiol	11	2-55-0	203-984-1			
LD5	0	>	5000	mg/kg bodyweight			
Spe	cies	rat					
Sou	rce	ECHA					

Acu	te dermal toxicity				
No	Substance name		CAS no.		EC no.
1	methyl-methacrylate		80-62-6		201-297-1
LD5	0	>		5000	mg/kg bodyweight
Spe	cies	rabbit			
Meth	Method				
Soul	rce	ECHA			
2	dodecane-1-thiol		112-55-0		203-984-1
LD5	0	>=		2000	mg/kg bodyweight
Spe	cies	rabbit			
Meth	nod	OECD 402			
Soul	rce	ECHA			

Acu	Acute inhalational toxicity					
No	Substance name		CAS no.		EC no.	
1	methyl-methacrylate		80-62-6		201-297-1	
LC5	0			29.8	mg/l	
Dura	ation of exposure			4	h	
State	e of aggregation	Vapour				
Spe	cies	rat				
Soul	rce	ECHA				

Skin corrosion/irritation

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

No	Substance name		CAS no.		EC no.	
1	dodecane-1-thiol		112-55-0		203-984-1	
Dura	ation of exposure			4	h	
Spe	cies	rabbit				
Meth	nod	OECD 404				
Soul	rce	ECHA				
Eval	uation	corrosive				

Serious eye damage/irritation

No data available

Res	piratory or skin sensitisation			
No	Substance name		CAS no.	EC no.
1	methyl-methacrylate		80-62-6	201-297-1
Rou	te of exposure	Skin		
Spe	cies	mouse		
Meth	nod	OECD 429		
Sou	rce	ECHA		
Eval	uation	sensitizing		
2	dodecane-1-thiol		112-55-0	203-984-1
Rou	te of exposure	Skin		
Spe	cies	mouse		
Meth	nod	OECD 429		
Sou	rce	ECHA		
Eval	uation	sensitizing		

Ger	Germ cell mutagenicity					
No	Substance name	CAS no.	EC no.			
1	methyl-methacrylate	80-62-6	201-297-1			
Sou	rce	ECHA				
Eva	luation/classification	Based on available data, the class	ification criteria are not met.			

Reproduction toxicity

No data available

Card	Carcinogenicity					
No	Substance name	CAS no.	EC no.			
1	methyl-methacrylate	80-62-6	201-297-1			
Soul	rce	ECHA				
Evaluation/classification		Based on available data, the classification criteria are not met.				

STOT - single exposure

No data available

STOT - repeated exposure

No data available

Aspiration hazard No data available

11.2 Information on other hazards

Endocrine disrupting properties

No data available.

Other information

No data available.

SECTION 12: Ecological information

12.1 Toxicity

Toxicity to fish (acute)

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

No Substance name	CAS no.		EC no.	
1 methyl-methacrylate	80-62-6		201-297-1	
LC50	>	79	mg/l	
Duration of exposure		96	h	
Species	Oncorhynchus mykiss			
Method	OECD 203			
Source	ECHA			
2 dodecane-1-thiol	112-55-0		203-984-1	
LC50	>	100	mg/l	
Duration of exposure		96	h	
Species	Oncorhynchus mykiss			
Source	ECHA			

Toxicity to fish (chronic) No data available

Toxi	city to Daphnia (acute)			
No	Substance name	CAS no	0.	EC no.
1	methyl-methacrylate	80-62-6	6	201-297-1
EC5	0		69	mg/l
Dura	ation of exposure		48	h
Spe Meth		Daphnia magna OECD 202		
Sou	rce	ECHA		
2	dodecane-1-thiol	112-55	-0	203-984-1
EC5	0	>	10	mg/l
Dura	ation of exposure		48	h ¯
Spe Meth Sou	nod	Daphnia magna OECD 202 ECHA		
Eval	uation/classification	The tested concentra available data, the cla		limit of solubility. Based on a are not met.

Toxi	Toxicity to Daphnia (chronic)					
No	Substance name	CAS no.		EC no.		
1	methyl-methacrylate	80-62-6		201-297-1		
NOE	EC .		37	mg/l		
Dura	ation of exposure		21	day(s)		
Spe	cies	Daphnia magna				
Meth	nod	OECD 211				
Soul	rce	ECHA				

Toxic	ity to algae (acute)			
No S	Substance name	CA	S no.	EC no.
1 I	methyl-methacrylate	80-	62-6	201-297-1
EC50		>	110	mg/l
Durati	ion of exposure		72	h
Species		Selenastrum capr	icornutum	
Metho	od	OECD 201		
Sourc	ce	ECHA		
2 (dodecane-1-thiol	112	-55-0	203-984-1
EC50		>	0.0145	mg/l
Durati	ion of exposure		72	h
Speci	es	Raphidocelis subo	capitata	
Metho	od	OECD 201		
Source		ECHA		
Evalu	ation/classification	The tested concentration is above the limit of solubility. Based on		
		available data, the	e classification criteria ar	e not met.

Tox	icity to algae (chronic)			
No	Substance name	CAS no.	EC no.	

Trade name: WIDOCRYL-point

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

1	dodecane-1-thiol	112-55-0 203-984-1		
NOE	C	14.5 μg/l		
Dura	tion of exposure	72 h		
Spec	cies	Raphidocelis subcapitata		
Soul	Source ECHA			
Eval	uation/classification	Based on available data, the classification criteria are met.		

Bacteria toxicity	
No data available	

12.2 Persistence and degradability

Biod	Biodegradability					
No	Substance name	CAS no.		EC no.		
1	methyl-methacrylate	80-62-6		201-297-1		
Valu	e		94	%		
Dura	ation		14	day(s)		
Meth	nod	OECD 301 C				
Source		ECHA				
Evaluation		readily biodegradable				

12.3 Bioaccumulative potential

2 <u>.3 E</u>	3 Bioaccumulative potential					
Part	Partition coefficient n-octanol/water (log value)					
No	Substance name		CAS no.		EC no.	
1	methyl-methacrylate		80-62-6		201-297-1	
log F	Pow			1.38		
Refe	erence temperature			20	°C	
Soul	Source					
2	dodecane-1-thiol		112-55-0		203-984-1	
log F	Pow	>		6.5		
Refe	Reference temperature			25	°C	
with	with reference to					
Meth	Method					
Soul	rce	ECHA				

12.4 Mobility in soil

No data available.

12.5 Results of PBT and vPvB assessment

No data available.

12.6 Endocrine disrupting properties

No data available.

12.7 Other adverse effects

No data available.

12.8 Other information

Other information	
Do not discharge product unmonitored into the environment.	

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Product

Allocation of a waste code number, according to the European Waste Catalogue, should be carried out in agreement with the regional waste disposal company.

Packaging

Residues must be removed from packaging and when emptied completely disposed of in accordance with the regulations for waste removal. Incompletely emptied packaging must be disposed of in the form of disposal specified by the regional disposer.

Trade name: WIDOCRYL-point

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

SECTION 14: Transport information

14.1 Transport ADR/RID/ADN

Class 3
Classification code F1
Packing group II
Hazard identification no. 33
UN number UN1866

Proper shipping name RESIN SOLUTION

Special Provision 640 640C Tunnel restriction code D/E Label 3

14.2 Transport IMDG

Class 3
Packing group II
UN number UN1866

Proper shipping name RESIN SOLUTION

EmS F-E, S-E

Label 3

14.3 Transport ICAO-TI / IATA

Class 3
Packing group II
UN number UN1866
Proper shipping name Resin solution
Label 3

14.4 Other information

No data available.

14.5 Environmental hazards

Information on environmental hazards, if relevant, please see 14.1 - 14.3.

14.6 Special precautions for user

No data available.

14.7 Maritime transport in bulk according to IMO instruments

Not relevant

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture EU regulations

Regulation (EC) No 1907/2006 (REACH) Annex XIV (List of substances subject to authorisation)

According to the data available and/or specifications supplied by upstream suppliers, this product does not contain any substances considered as substances requiring authorisation as listed on Annex XIV of the REACH regulation (EC) 1907/2006.

REACH candidate list of substances of very high concern (SVHC) for authorisation

According to available data and the information provided by preliminary suppliers, the product does not contain substances that are considered substances meeting the criteria for inclusion in annex XIV (List of Substances Subject to Authorisation) as laid down in Article 57 and article 59 of REACH (EC) 1907/2006.

Regulation (EC) No 1907/2006 (REACH) Annex XVII: RESTRICTIONS ON THE MANUFACTURE, PLACING ON THE MARKET AND USE OF CERTAIN DANGEROUS SUBSTANCES, MIXTURES AND ARTICLES

The product is considered being subject to REACH regulation (EC) 1907/2006 annex XVII. No 3, 40

The product contains following substance(s) that are considered being subject to REACH regulation (EC) 1907/2006 annex XVII.

Current version: 2.0.0, issued: 15.12.2023 Replaced version: 1.4.0, issued: 11.06.2021 Region: GB

No	Substance name	CAS no.	EC no.	No	
1	2-Hydroxyethyl methacrylate	868-77-9	212-782-2	75	
2	mequinol	150-76-5	205-769-8	75	
3	methyl-methacrylate	80-62-6	201-297-1	75	

Directive 2012/18/EU on the control of major-accident hazards involving dangerous s	ubstances
This product is subject to Part I of Annex I, risk category:	P5b

15.2 Chemical safety assessment

No data available.

SECTION 16: Other information

Sources of key data used to compile the data sheet:

Regulation (EC) No 1907/2006 (REACH), 1272/2008 (CLP) as amended in each case.

Directives 2000/39/EC, 2006/15/EC, 2009/161/EU, (EU) 2017/164.

National Threshold Limit Values of the corresponding countries as amended in each case.

Transport regulations according to ADR, RID, IMDG, IATA as amended in each case.

The data sources used to determine physical, toxic and ecotoxic data, are indicated directly in the corresponding section

Full text of the H- and EUH- phrases drawn up in sections 2 and 3 (provided not already drawn up in these sections)

H314 Causes severe skin burns and eye damage.

H318 Causes serious eye damage. H319 Causes serious eye irritation. H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.

Notes relating to the identification, classification and labelling of substances and mixtures ((EC) No 1272/2008, Annex VI)

D Certain substances which are susceptible to spontaneous polymerisation or

decomposition are generally placed on the market in a stabilised form. It is in this form that they are listed in Part 3. However, such substances are sometimes placed on the market in a non-stabilised form. In this case, the supplier must state on the label the name of the

substance followed by the words 'non-stabilised'.

Creation of the safety data sheet

UMCO GmbH

Georg-Wilhelm-Str. 187, D-21107 Hamburg

Tel.: +49 40 / 555 546 300 Fax: +49 40 / 555 546 357 e-mail: umco@umco.de

This information is based on our present knowledge and experience.

The safety data sheet describes products with a view to safety requirements.

It does not however, constitute a guarantee for any specific product properties and shall not establish a legally valid contractual relationship.

Alterations/supplements:

Alterations to the previous edition are marked in the left-hand margin.

Document protected by copyright. Alterations or reproductions require the express written permission of UMCO GmbH.

Prod-ID 628850